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SUMMARY

We wish to demonstrate that it is judicious to combine various existing computational techniques that
appeared for academic cases in seemingly unrelated areas, namely, semi-implicit relaxation schemes
for hyperbolic systems and adaptive multiresolution algorithms, in order to achieve fast and accurate
simulations of realistic two-phase flows problems in oil transportation. By ‘realistic’ we mean problems
that are modelled by partial differential equation (PDE) systems closed by sophisticated thermodynamics
and hydrodynamics laws, set out over a terrain-induced geometry and associated with time-dependent
boundary conditions. Although the combination of these techniques is not a straightforward matter, it
is made possible via a careful examination of the objectives of the simulation problem and suitable
adaptations of which we shall give the details. Significant benchmarks demonstrate the efficiency of the
proposed method. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We are interested in accelerating the computation of realistic two-phase flows in pipelines, while
keeping an acceptable degree of accuracy. Our primary application is oil transportation. Before
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talking about the proposed acceleration technique, let us elaborate on what actually lies behind
the word ‘realistic’.

Traditionally, such flows are modelled by a 1-D system of partial differential equations (PDEs),
obtained by averaging the 3-D conservation equations over cross-sections. This operation is jus-
tified, since a typical pipeline length is of the order of several kilometers, whereas its diameter
is of the order of a meter, so the flow can be considered as 1-D. We shall consider a class of
models known as drift–fluxmodel [1], which consists of two-phase-mass balance equations and one
total-momentum balance equation. Drift–flux models are used in industrial codes such as TACITE
(IFP). Its main advantage over models with two momentum equations [2] is that it provides us
with a system in conservative form. In return, we have to supply it with an additional algebraic
slip law.

The degree to which the flow is considered ‘realistic’ depends, of course, on the type of
closure laws in use. The slip law, also called the hydrodynamics law, reflects indeed the empirical
knowledge of physicists about the flow pattern. The thermodynamics law, the purpose of which is
to give the pressure, looks more standard but could be troublesome too. An evaluation of either
the hydrodynamics law or the thermodynamics law may involve iterative procedures and thus be
computationally expensive.

But the ‘realism’ of the simulation also depends heavily on two other features. On one hand,
we have to take into account the scenario that the operator-user wants to apply. In mathematical
terms, a scenario is expressed by a set of time-depending values of parameters that are to be
imposed as boundary conditions for the PDE system. Since time-varying boundary conditions are
the main source of inflow–outflow information for the physical problem, it is therefore capital
to cope with them in an effective and accurate way. On the other hand, the geometry of the
pipeline has a tremendous influence over the flow. For instance, the liquid can accumulate in the
low points of the pipeline, thus blocking the flow. Consequently, the gas pressure just before this
bottleneck increases and some point pushes the stopper liquid forward. This phenomenon is known
as slugging. Observe that slugging is a highly non-stationary flow regime, even if the conditions
at the pipeline’s inflow and outflow do not change in time. Due to violent pressure changes in the
pipeline, slugging causes faster pipeline fatigue and non-constant oil production on the platform.
Needless to say, it is also crucial to be able to deal with changes in inclination.

Another problem we have to face with, in the context of ‘realistic’ oil production flows, is the
existence of waves whose speeds are several orders of magnitude apart: fast acoustic (pressure)
waves and slow kinematic (transport) waves. Of these waves, only the slow kinematic ones are of
concern to us, since these correspond to the displacement of the gas mass-fraction in the mixture.
The fast acoustic waves, although uninteresting for the physical application considered, nevertheless
impose a severe stability condition (via the classical CFL restriction) if treated explicitly. Previous
works by Faille and Heintzé [3] and by Baudin et al. [4] have shown that it is possible to design
an explicit–implicit time integration strategy, so that fast components of the solution are evolved
in time with an implicit scheme, thus eliminating the most severe part of the CFL condition, and
slow components are evolved in time with an explicit scheme, therefore, ensuring a high degree of
accuracy required for the computation of transport waves. This strategy, also called semi-implicit
scheme, meets the very important requirement of conservativity. Furthermore, extensive test cases
show that suitable tuning of the explicit and implicit CFL conditions provide relevant accuracy for
the complete solution.

According to engineers, it is essential that, in the neighbourhood of a gas mass-fraction discon-
tinuity or an abrupt change in inclination or the inflow–outflow boundaries, a very small cell size
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be used in order to capture the motion with enough accuracy. If a uniform mesh were used, this
would lead to a huge number of cells in the overall mesh, which is quite unaffordable. Away from
a discontinuity, the fluctuations in the solution are due to the supposedly uninteresting acoustic
waves. Since these acoustic waves are treated implicitly, the possible zones of stiff transitions
are smoothed out from the very first time-steps on. Therefore, it is reasonable to think that their
computation can be carried out over a much coarser grid. This observation naturally leads to
multiresolution techniques. However, the question that remains to be answered is how can the
standard multiresolution techniques, that have been introduced for explicit schemes by Harten [5]
and developed by Cohen et al. [6, 7] in the context of conservation laws, be properly extended to
the semi-implicit scheme.

In [8], we made a first attempt in this direction, by considering the simplified situation where the
pipeline is uniformly horizontal and the slip velocity vanishes identically. These hypotheses give
rise to models with good mathematical properties. We then succeeded in devising a grid adaptation
paradigm, based on local smoothness indicators, that yields good speed-up factors with acceptable
accuracy in the results. In the present paper, we gather similar ingredients and some new ideas in
order to tackle the most general setting, i.e. problems with complex closure laws and variations in
inclination. The closure laws we shall be using are much more ‘realistic’ than the zero-drift law
used in [8].

The paper is outlined as follows. In Section 2 we introduce the drift–flux model and discuss its
mathematical properties. In Section 3, we briefly recall the semi-implicit version of the relaxation
method [4]. In Section 5, we provide some details about the multiresolution algorithm. The emphasis
will be laid on the way we put together the multiresolution algorithm and the semi-implicit scheme.
Finally, Section 6 contains numerical results to illustrate the method, including in particular the
so-called severe slugging phenomenon.

2. THE DRIFT–FLUX MODEL

The pipeline is characterized by its length L and diameter D. In this work, we only consider the
plane pipelines, i.e., the geometry of the pipeline is determined by the angle � = �(x), where the
x-axis is oriented along the pipeline. Assuming that D�L , we can consider the flow as 1-D.

The phases are denoted by the subscripts � (liquid) and g (gas). For k = �, g, the phase densities
are denoted by �k , the fraction surfaces (the part of the pipeline cross-section, occupied by the
phase k) by Rk , and the velocities by vk . We suppose the pressure equilibrium between the two
phases, p� = pg =: p.

2.1. Conservation laws

The so-called drift–flux model consists of three PDEs, expressing the conservation of the masses
of both phases and the total momentum of the mixture. It is usually written by physicists as

�t (��R�) + �x (��R�v�) = 0

�t (�g Rg) + �x (�g Rgvg) = 0

�t (��R�v� + �g Rgvg) + �x (��R�v
2
� + �g Rgv

2
g + p) = S

(1)
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where

S =−(��R� + �g Rg)[g sin � + Cv|v|] (2)

is the source term. Here, C = 2Cf/D, with Cf the friction coefficient, and

v = ��R�v� + �g Rgvg

��R� + �g Rg
(3)

the mass-averaged velocity. Subscripts t and x stand for partial derivatives with respect to t and x .
For mathematical purposes, it is much more convenient to put (1) under a form that is close to

gas dynamics. Let us introduce

• the total mixture density � := ��R� + �g Rg
• the gas mass fraction Y := �g Rg/�
• the slip velocity � := v� − vg

so that

v� = v + Y� and vg = v − (1 − Y )� (4)

Then, a little algebra shows that (1) is equivalent to

�t (�) + �x (�v) = 0

�t (�Y ) + �x (�Yv − �) = 0

�t (�v) + �x (�v2 + P) = S

(5)

with

�= �Y (1 − Y )� and P = p + �Y (1 − Y )�2 (6)

Note that the source term (2) now becomes S =−�g sin � − C�v|v|.
The partial differential system (5) has the abstract form

�tU + �xF= T for x ∈ [0, L], t � 0 (7)

with

U = (�, �Y, �v)T

F= (�v, �Yv − �, �v2 + P)T

T = (0, 0, S)T

(8)

The unknown U belongs to an open convex subset � ⊂ R3, the definition of which will be given
later on. The source term T is easily expressible as a function of U. In order for the flux F to be a
function of the conservative variables U, namely, F=F(U), we need to be given two additional
algebraic relations to compute p and �. These will be referred to as closure laws.
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2.2. Closure laws

2.2.1. Thermodynamics. In the most general setting, we are given two equations of state, one for
each phase, that is,

�� = ��(p) and �g = �g(p) (9)

Then, from the obvious equation R� + Rg = 1, which is now written as

�(1 − Y )

��(p)
+ �Y

�g(p)
= 1 (10)

we can infer a value for the pressure p= p(�, Y ).
In the context of this paper, we use the ideal gas equation of state for the gas

�g(p) = p

a2g
(11)

where ag is the constant gas sound speed. The equation of state for the liquid is

��(p) = �0� + p − p0

a2�
(12)

where p0 is the atmospheric pressure, �0� is the liquid density at p= p0, and a� is the constant
liquid sound speed. Those three parameters are subject to the inequality

�0�>
p0

a2�
(13)

Under such conditions, Equation (10) can be transformed into a quadratic equation for p, i.e.

1

a2�
p2 + Dp − E = 0 (14)

with

D =
(

�0� − p0

a2�

)
− �(1 − Y ) − �Y

a2g
a2�

and E = a2g�Y

(
�0� − p0

a2�

)
(15)

Equation (14) has two roots. If E>0, only one of the roots is positive. This positive root is
associated with the branch

p(U) =
−D +

√
D2 + 4E/a2�

2/a2�
= 2E

D +
√
D2 + 4E/a2�

(16)

Note that we also have to require D>0, so that in the limit case of an incompressible liquid, we
have

p(U) = 2E

D + |D| = E

D
= a2g

�Y

1 − (�/�0�)(1 − Y )
>0 (17)
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In summary, for the pressure to be well-defined, we must have D>0 and E>0, which restricts the
domain to

�th =
{

U ∈ R3|0<Y<1, 0<�(1 − Y ) + �Y
a2g
a2�

<�0� − p0

a2�

}
(18)

2.2.2. Hydrodynamics. The slip law �=�(U) is meant to reflect the flow regime of the two-phase
flow. In this work, we shall be using two hydrodynamics laws. The first one is the so-called Zuber–
Findlay law [9]. This original Zuber–Findlay is an experimental result for intermittent flows, which
states that

vg = c0(Rgvg + R�v�) + c1 (19)

where c0 = 1 + �>1 and c1 = �, with � and � two arbitrary constants. Inserting (4) into (19), we
end up with

�(U) =− (c0 − 1)v + c1
1 − Y + c0�(U)

= �v + �

1 − Y + (1 + �)�(U)
(20)

where

�(U) = (1 − Y )

(
�

��(p(U))
− 1

)
(21)

In numerical tests, we use �= 0.07 and � = 0.2162. Note that this slip law is highly nonlinear with
respect to the unknown U, since it involves the thermodynamics. From now on, and with a little
abuse of notation, we will drop the dependence on U.

It can be shown [10] that system (5), equipped with the laws (16) and (20), is hyperbolic over
the domain

�=
{

U ∈ �th|0<Rg<
1

c0
, �2<

1 + �

�
W

}
(22)

where

�= �g

��

c0Rg

1 − c0Rg
and W = p

��Rg(1 − c0Rg)
(23)

Then, the characteristic speeds are of the form

	− = v̂ − am, 	0 = vg, 	+ = v̂ + am (24)

where

v̂ = v� + �vg
1 + �

and am =
√

(1 + �)W − ��2

1 + �
(25)

Physically, am�v̂ so that 	−<0, 	+>0. Similarly, in the case of the Euler equations, the fast
characteristic speeds 	− and 	+ are associated with the acoustic waves, whereas the slow speed
	0 is associated with the transport. In our applications we are mainly interested in the accurate
resolution of the slow waves, since they correspond to the motion of material interfaces.
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Note that this original Zuber–Findlay law (20) is not valid for Rg>1/c0, where system (5) fails
to be hyperbolic. An easy way to see why this original Zuber–Findlay law behaves badly in the
neighbourhood of a pure gas phase is the following. Substituting (Rg, R�) = (1, 0) into Equation
(19), we have vg = c0vg + c1 if v� were to remain bounded. Unless (c0, c1) = (1, 0), this would
impose a specific value for vg , which makes no physical sense. To carry out simulations involving
pure gas states, we will use a modified Zuber–Findlay law [11], in which c0 and c1 now depend
on Rg . More specifically, we choose to work with

c0 = 1 + �R� and c1 = �R� (26)

In terms of slip value, we have

� =−�v + �

1 + ��
(27)

Due to relative complexity of the law (27), it is impossible to provide the characteristic analy-
sis of system (5), closed with the law (27). In numerical tests, we shall take � = 0.2 sin2 � and
� = 0.35

√
gD sin �.

2.3. Boundary conditions and initial data

We define the mass flow-rates q� = ��R�v�, qg = �g Rgvg , and q = q� + qg . At the entrance of the
pipeline x = 0, we impose the mass flows for the liquid q� = q̄�(t), and for the gas qg = q̄g(t). An
equivalent way of expressing things is to say that, at the entrance, we impose the total flow-rate
q = q̄(t) = q̄g(t)+ q̄�(t) and the gas flow-rate qg = q̄g(t). At the exit x = L , we impose the pressure
p := p̄(t). These boundary conditions q̄, q̄g , and p̄ depend on time.
The initial data Û(x)= U(x, t = 0) are always set as the steady-state solution of (1) with the

boundary conditions taken at time t = 0, that is,

dx (�̂v̂) = 0

dx (�̂Ŷ v̂ − �̂) = 0

dx (�̂v̂2 + P̂) = Ŝ

(28)

with �̂v̂(x = 0)= q̄(t = 0), (�̂Ŷ v̂ − �̂)(x = 0)= q̄G(t = 0), and p̂(x = L) = p̄(t = 0). Note that the
achievement of this solution may require an iterative numerical resolution.

3. THE SEMI-IMPLICIT RELAXATION METHOD

In this section we recall briefly the main ideas behind the semi-explicit version of the relaxation
method. For details, we refer to Baudin et al. [4, 12] and Coquel et al. [8].
3.1. Basics of relaxation

3.1.1. Highlighting nonlinearities. In Lagrangian co-ordinates (t,m), with dm = � dx −�v dt , the
drift–flux model (5) boils down to

�t
 − �mv = 0

�t Y − �m� = 0

�tv + �m P = 
S

(29)
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where 
= 1/� is the specific volume. This Lagrangian form highlights the nonlinearities � and P .
The idea of relaxation consists in replacing those highly complex functions by unknowns � and
�, and to work out evolution equations for these unknowns. More specifically, we consider the
new system

�t
 − �mv = 0

�t Y − �m� = 0

�tv + �m� = 
S

�t� + a2�mv = 	[P(
, Y, v) − �]
�t� − b2�mY = 	[�(
, Y, v) − �]

(30)

in which a, b are two positive coefficients, and 	>0 is the relaxation parameter. Let us note
that in the regime of an infinite relaxation parameter 	 →∞, the last two PDEs in (30) reduce
to �= P(
, Y, v) and �= �(
, Y, v). This observation is only formal, since after the works of
[13], it is known that, the eigenvalues of the relaxation system (30) must be properly interlaced
with those of the equilibrium system (29) to prevent the relaxation procedure from instability in
the regime of large 	. In our setting this requirement implies that the coefficients a and b are
appropriately set. Precise bounds on these coefficients will be given later on. Let us emphasize
that a has the dimension of the Lagrangian acoustic speed while b refers to the kinematic speed.
As a consequence, a is much larger than b.

3.1.2. Properties of the relaxation system. Transforming (30) back to Eulerian co-ordinates,
we have

�t (�) + �x (�v) = 0

�t (�Y ) + �x (�Yv − �) = 0

�t (�v) + �x (�v2 + �) = S

�t (��) + �x (��v + a2v) = 	�[P(U) − �]
�t (��) + �x (��v − b2Y ) = 	�[�(U) − �]

(31)

This is called the relaxation system for (5). In abstract form, it reads

�tV + �xG(V) = 	L(V) + S(V) (32)

where

V = (�, �Y, �v, ��, ��)T = (U, ��, ��)T

G(V) = (�v, �Yv − �, �v2 + �, ��v + a2v, ��v − b2Y )T

S(V) = (0, 0, S(U), 0, 0)T

L(V) = (0, 0, 0, �(P(U) − �), �(�(U) − �))T

(33)
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Of course, P and � are given by Equation (6). The unknown V belongs to the open set

�V ={V = (U, ��, ��) ∈ � × R2} (34)

The relaxation system (31), at least for the homogeneous part, has several advantages over the
original system (5). First of all, its mathematical structure appears to be quite simple. Indeed, the
homogeneous system (32) is strictly hyperbolic, and all of its eigenvalues

v − a

�
�v − b

�
� v � v + b

�
�v + a

�
(35)

correspond to linearly degenerated fields. Analogously to (24), and since, as already claimed a�b,
we can distinguish between the slow transport waves v and v ± b/� and the fast acoustic waves
v ± a/� of (32). Moreover, we can also solve exactly the Riemann problem for (32) (see [12] and
below). Therefore, we can use Godunov’s method for the numerical solution of (32).

3.1.3. Whitham conditions. When is (31) a ‘good’ approximation of (5)? The question is equivalent
to when is (30) a ‘good’ approximation of (29). The answer relies on the so-called Chapman–
Enskog expansion. We introduce the first-order approximations �	 and �	 of the equilibrium
values P(U) and �(U)

�	 = P(U	) + 1

	
P1
a,b(U

	, �xU	) + O

(
1

	2

)

�	 = �(U	) + 1

	
�1a,b(U

	, �xU	) + O

(
1

	2

)
where the first-order correctors P1

a,b and �1a,b depend on the coefficients a and b. Plugging these
expansions in the first three equations of the relaxation system (30) leads to the following system
for describing near equilibrium evolution at the first-order in 1/	:

�tU	 + �xF(U	) = T(U	) + 1

	
�x (Da,b(U

	)�xU	)

where Da,b(U
	) is a matrix which must have non-negative eigenvalues since it must be a diffusion

term. The coefficients a and b have to be properly defined to meet this requirement. For this, it is
easier to consider P and � as functions of 
, Y , and v. In [4], it was shown that an appropriate
set of conditions to ensure that the relaxation system is a stable approximation to the original
system are

a2>[�vP]2 − �
P and b>|�Y�| (36)

which we will refer to as the Whitham conditions.

3.2. First-order explicit scheme

Consider a computational mesh in the domain [0, L], consisting of cells j with mesh sizes �x j ,
j = 1, . . . , N . In general, the mesh sizes �x j can be different. We will describe the construction of
the mesh in Section 5. Denote by Vn

j the average values at the mesh cell j at time tn , j = 1, . . . , N .
The time step �t is the same for all cells and bounded by the CFL condition on the smallest cell.
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3.2.1. Two-step relaxation procedure. Given some approximation of the equilibrium solution at
time tn , say,

Vn(x)= (Un, �P(Un), ��(Un))T(x)

this one is evolved at the next time level tn+1 = tn + �t into two steps.

1. Evolution step. For times t ∈ (0,�t), we solve the Cauchy problem for the relaxation system
(32) when setting the relaxation parameter 	 to zero

�t (�) + �x (�v) = 0

�t (�Y ) + �x (�Yv) = 0

�t (�v) + �x (�v2 + �) = S

�t (��) + �x (��v + a2v) = 0

�t (��) + �x (��v − b2Y ) = 0

(37)

At the discrete level, this step is carried out as

Vn+1
j := Vn

j − �t

�x j
(Gn

j+1/2 − Gn
j−1/2) + �tSn

j (38)

where

Gn
j+1/2 = G(Vn

j , Vn
j+1) =G(�(0+, Vn

j , Vn
j+1)) (39)

is the numerical flux, based on the exact Riemann problem for the relaxation system and
Sn

j = S(Un
j ). The self-similar solution to the Riemann problem with initial data

V(x, t = 0) =
{

V j if x<0

V j+1 if x>0
(40)

is denoted by �(., V j , V j+1). Its detailed structure reads (see [12])

�(x/t, V j , V j+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V j if x/t � v j − a/� j

V1 if v j − a/� j<x/t � v∗ − b/�∗
L

V2 if v∗ − b/�∗
L<x/t � v∗

V3 if v∗<x/t � v∗ + b/�∗
R

V4 if v∗ + b/�∗
R<x/t � v j+1 + a/� j+1

V j+1 if v j+1 + a/� j+1<x/t

(41)
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with

V1 = (�∗
L , �∗

LY j , �
∗
Lv∗, �∗

L�∗, �∗
L� j )

T

V2 = (�∗
L , �∗

LY
∗, �∗

Lv∗, �∗
L�∗, �∗

L�∗)T

V3 = (�∗
R, �∗

RY
∗, �∗

Rv∗, �∗
R�∗, �∗

R�∗)T

V4 = (�∗
R, �∗

RY j+1, �
∗
Rv∗, �∗

R�∗, �∗
R, � j+1)

T

(42)

where

v∗ = 1

2
(v j + v j+1) − 1

2a
(� j+1 − � j )

�∗ = 1

2
(� j + � j+1) − a

2
(v j+1 − v j )

Y ∗ = 1

2
(Y j + Y j+1) + 1

2b
(� j+1 − � j )

�∗ = 1

2
(� j + � j+1) + b

2
(Y j+1 − Y j )

(43)

while

1

�∗
L

= 1

� j
+ � j − �∗

a2
and

1

�∗
R

= 1

� j+1
+ � j+1 − �∗

a2
(44)

2. Equilibrium step. At time t =�t , we solve the ODE problem

�t (�) = 0

�t (�Y ) = 0

�t (�v) = 0

�t (��) = 	�[P(U) − �]
�t (��) = 	�[�(U) − �]

(45)

with initial data V(x, t =�t) while letting the relaxation parameter 	 go to +∞. This second
step in the method clearly amounts to setting

�n+1
j = P(Un+1

j ) and �n+1
j = �(Un+1

j ) (46)

at the discrete level.

3.2.2. Interpretation as a Roe method. As observed in [4], the linear degeneracy property of all
the fields in (37) allows us to re-express the Godunov numerical flux function (39) as a Roe-type
numerical flux function

G(V j , V j+1) = 1
2 [G(V j ) + G(V j+1)] − 1

2 |A j+1/2|(V j+1 − V j ) (47)
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where the Roe linearization A(V j , V j+1) : �V × �V → Mat(R5) is defined in its diagonalized
form A(V j , V j+1) =A j+1/2 =R j+1/2� j+1/2L j+1/2 by

A j+1/2 =R j+1/2� j+1/2L j+1/2 (48)

with

� j+1/2 = diag(v j − a/� j , v
∗ − b/�∗

L , v∗, v∗ + b/�∗
R, v j+1 + a/� j+1)

R j+1/2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1

Y j 1 Y ∗ 1 Y j+1

v j − a/� j 0 v∗ 0 v j+1 + a/� j+1

� j + a2/� j 0 �∗ 0 � j+1 + a2/� j+1

� j b �∗ −b � j+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
L j+1/2 = [R j+1/2]−1

(49)

For the sake of completeness, we recall that, by definition, a Roe linearization A(V j , V j+1) :
�V × �V → Mat(R5) should satisfy the three standard conditions

(R1) A(V, V) =∇G(V)

(R2) A(VL , VR) = (R�R−1)(VL , VR) is R-diagonalizable

(R3) G(VR) − G(VL) =A(VL , VR)(VR − VL)

(50)

for all states V, VL and VR in �V. When such a linearization exists, it is common to replace the
Riemann problem associated with the exact system

�tV + �xG(V) = 0 (51)

by that associated with the linearized system

�tV + A(V j , V j+1)�xV = 0 (52)

at each edge j + 1
2 . This yields form (47) for the numerical flux. The ability to re-express the

first-order explicit numerical flux (39) as a Roe-type linearization is the most crucial feature that
enables us to design an implicit version of the relaxation method.

3.2.3. Practical choice for relaxation parameters. So far, we have considered a and b as global
parameters, that is, independent of the space variable. In practice, it is interesting to take them as
local parameters a j+1/2 and b j+1/2 in order to minimize the numerical dissipation.

The Whitham conditions (36) are taken into account by requiring that

a j+1/2 > a�
j+1/2 := max

(√
[�v P̃]2 − �
 P̃j

,

√
[�v P̃]2 − �
 P̃j+1

)
b j+1/2 > b�

j+1/2 := max
(|�Y �̃| j , |�Y �̃| j+1

) (53)
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Moreover, as shown in [4, 12] it is possible to guarantee that the first-order explicit scheme is
positivity-preserving, i.e., it ensures �n+1

j >0 and Yn+1
j ∈ [0, 1]. In order to do so, we must choose

the relaxation parameters appropriately, that is,

a j+1/2 > a�
j+1/2 := vi − vi+1 +√

(vi − vi+1)2 + 8max(
i , 
i+1)|Pi − Pi+1|
4min(
i , 
i+1)

b j+1/2 > b�
j+1/2 := |�i�i + �i+1�i+1| + |�i�i − �i+1�i+1|

2

(54)

Therefore, the final tuning for the local relaxation parameters is

a j+1/2 = max(a�
j+1/2, a

�
j+1/2) and b j+1/2 = max(b�

j+1/2, b
�
j+1/2) (55)

3.3. Treatment of boundary conditions

In order to take the boundary conditions into account, we introduce two ghost states: Vn
0 at the

inlet of the pipe and Vn
N+1 at the outlet. These states are computed as nonlinear functions

Vn
0 = V0(V

n
1) and Vn

N+1 = VN+1(V
n
N ) (56)

so that, in the weak sense, they allow us to impose the boundary conditions at the interfaces x1/2
and xN+1/2.

At the inlet, the ghost state Vn
0 is defined in order to satisfy the five following conditions. First,

the relaxation state Vn
0 is at equilibrium which leads to the two identities (46). Second, we specify

the total mass flow-rate (which corresponds to the first component �v) and the gas mass flow-rate
(which corresponds to the second component �Yv − �) which leads to the two identities

G1(V
n
0, Vn

1) = q̄�(t
n) + q̄g(t

n), G2(V
n
0, Vn

1) = q̄g(t
n) (57)

Third, let us introduce �1 the left eigenvector corresponding to the first eigenvalue of ∇G(Vn
1).

We then specify the characteristic projection

�1.V
n
0 = �1.V

n
1 (58)

The nonlinear system made up of the five equations (46), (57) and (58) is solved by a classical
nonlinear solver (for instance, Newton’s method).

At the outlet, the ghost state Vn
N+1 is defined in order to satisfy the five following conditions.

First, the relaxation state Vn
N+1 is at equilibrium which leads to the two identities (46). Second,

we specify the pressure which leads to the identity

p(Vn
N+1) = p̄(tn) (59)

Third, we write the identities

Yn
N+1 = Yn

N , vnN+1 = vnN (60)

The nonlinear system made up of the five equations (46), (59) and (60) is solved exactly.
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3.4. Semi-implicit strategy

3.4.1. Linearly implicit scheme. Thanks to the Roe form (47), we now envisage the implicit version
of the evolution step (38)

Vn+1
j := Vn

j − �t

�x j
(Gn+1

j+1/2 − Gn+1
j−1/2) + �tSn+1

j (61)

using

Gn+1
j+1/2 = 1

2 [G(Vn+1
j ) + G(Vn+1

j+1)] − 1
2 |A(Vn

j , Vn
j+1)|(Vn+1

j+1 − Vn+1
j ) (62)

Note that we have ‘frozen’ the Roe matrix An
j+1/2 =A(Vn

j , Vn
j+1) at time n. This implicit

numerical flux is still too much involved, so let us Taylor expand it to have a new approximation,
namely,

Gn+1
j+1/2 = Gn

j+1/2 + 1
2 [∇G(Vn

j ) + |An
j+1/2|]�V j + 1

2 [∇G(Vn
j+1) − |An

j+1/2|]�V j+1 (63)

with �V j := Vn+1
j − Vn

j . Likewise, we linearize the source term with the Taylor expansion as

Sn+1
j = Sn

j + ∇S(Vn
j )�V j (64)

Concerning the implicit treatment of the boundary conditions at the first order of approxima-
tion, we freeze the ghost states Vn

0 and Vn
N+1. Exhaustive numerical tests support this strategy

(see [4]).
We end up with the linearly implicit scheme⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1 E2 0 · · · 0

C1 D2 E3 · · · 0

. . . . . . . . . . . . . . .

0 · · · CN−2 DN−1 EN

0 · · · 0 CN−1 DN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�V1

�V2

· · ·
�VN−1

�VN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1

R2

· · ·
RN−1

RN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(65)

with

C j−1 = − �t

2�x j
[∇G(Vn

j−1) + |An
j−1/2|]

D j = I + �t

2�x j
[|An

j+1/2| + |An
j−1/2|] − �t∇S(Vn

j )

E j+1 = �t

2�x j
[∇G(Vn

j+1) − |An
j+1/2|]

R j = − �t

�x j
[Gn

j+1/2 − Gn
j−1/2] + �tSn

j

(66)

and R0 = RN+1 = 0. In (66), I denotes the unity matrix. System (65) is block-tridiagonal 5× 5.
As for the R j ’s, they are called explicit residues.
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3.4.2. Linearly semi-implicit scheme. The above scheme (65) is implicit with respect to all waves.
As stated in the Introduction, we are mostly interested in the accurate computation of slow transport
wave. This leads us to work out a semi-implicit strategy, in which slow waves are explicited while
fast waves are implicited.

In order to achieve this objective, we cancel out the diagonal entries corresponding to slow
transport waves in �n

j+1/2, defined by (49). This amounts to considering

�̃
n
j+1/2 = diag(vnj − a/�nj , 0, 0, 0, v

n
j+1 + a/�nj+1) (67)

and to use Ã
n
j+1/2 =Rn

j+1/2�̃
n
j+1/2L

n
j+1/2 instead of An

j+1/2. In a similar fashion, we eliminate
the contribution of slow transport waves to the implicit part by modifying the Jacobian matrices:
(i) define ∇̃G(V) by diagonalizing ∇G(V) first, then by canceling its slow diagonal entries, and
finally by returning to the initial basis; (ii) use ∇̃G(V) instead of ∇G(V) in (66). This leads to
the matrices

C̃ j−1 = − �t

2�x j
[∇̃G(Vn

j−1) + |Ãn
j−1/2|]

D̃ j = I + �t

2�x j
[|Ãn

j+1/2| + |Ãn
j−1/2|] − �t∇S(Vn

j )

Ẽ j+1 = �t

2�x j
[∇̃G(Vn

j+1) − |Ãn
j+1/2|]

(68)

to be plugged into the block linear system (65), in place of C j−1, D j and E j+1.
Actually, for the semi-implicit scheme to behave well, the experience of Baudin et al. [4] shows

that it is necessary to take into account the equilibrium condition

�n+1
j := P(Un+1

j ) (69)

to be satisfied at the equilibrium step (46), already in the implicit evolution step from tn to tn +�t .
During this step, we propose to force a linearized version of the equilibrium condition

�(��) j − ��P

��

∣∣∣∣n
j
�(�) j − ��P

��Y

∣∣∣∣n
j
�(�Y ) j − ��P

��v

∣∣∣∣n
j
�(�v) j = 0 (70)

This amounts to modify the fourth line of D̃ j in (68) as(
��P

��

∣∣∣∣n
j
,

��P

��Y

∣∣∣∣n
j
,

��P

��v

∣∣∣∣n
j
, −1

)

and to set the fourth lines of C̃ j−1, Ẽ j+1 and R j to zero.
The time step is subject to the two CFL constraints: the explicit and the implicit one. We demand

that

• the slow characteristic speeds satisfy

�t max
j

max(|v� − b/��
L | j+1/2, |v� + b/��

R| j+1/2)

min(�x j , �x j+1)
<CFLexp (71)

with CFLexp ≈ 0.5;
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• the fast characteristic speeds satisfy

�t max
j

max(|v j − a j+1/2/� j |, |v j+1 + b j+1/2/� j+1|)
min(�x j , �x j+1)

<CFLimp (72)

with CFLimp ≈ 20.

See Coquel et al. [8] for an in-depth discussion on stability conditions and CFL ratios.

4. EXTENSION TO THE SECOND ORDER

The second-order enhancement in space is performed only on the explicit part of the scheme,
namely, the residues R j . We use the MUSCL piecewise linear data reconstruction of Engquist
and Osher [14]. Given piecewise constant values Vn

j on a non-uniform grid where in general
�x j1 �=�x j2 with j1 �= j2, we obtain the linearly extrapolated values

W+
j−1/2 = Wn

j − �x j
2

�̄W j and W−
j+1/2 = Wn

j + �x j
2

�̄W j (73)

The experience of Baudin et al. [4] shows that the best results are obtained if this step is performed
in primitive variables

W = (p, Y, v)T (74)

We limit the slopes �̄W j according to

�̄W j =Limiter(�W j−1/2, �W j+1/2) (75)

(to be understood component-wise), where

�W j+1/2 = 2

�x j+1 + �x j
(Wn

j+1 − Wn
j ) (76)

The limiter function could be any known limiter, such as minmod, Van Leer or superbee.
Once the reconstructed values W−

j+1/2, W+
j+1/2 have been obtained at edge j+ 1

2 , we recompute

the corresponding conservative variables V−
j+1/2, V+

j+1/2 so that these are in equilibrium. We now

apply the ideas presented in Section 3, but with V−
j+1/2, V+

j+1/2 instead of Vn
j , Vn

j+1. In other
words, the explicit numerical flux is now

Gn
j+1/2 = 1

2 [G(V−
j+1/2) + G(V+

j+1/2)] − 1
2 |A(V−

j+1/2, V+
j+1/2)|(V+

j+1/2 − V−
j+1/2) (77)

The matrix of the implicit system is kept unchanged.
Since realistic field problems are mainly driven by strongly varying boundary conditions (see

benchmarks in Section 6) it is mandatory to perform the second-order enhancement up to the
boundaries. A consistent handling of the boundary conditions would require the knowledge of the
ghost state V0(V

+,n
1/2 ) (respectively, VN+1(V

−,n
N+1/2)) in order to apply the limited reconstruction

(75)–(76). Since V
+,n
1/2 (respectively, V

−,n
N+1/2) are the sought-after quantities, we approximate them
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in the limiter at the previous time step by

W
+,n
1/2 = Wn

1 − �x1
2

�̄W1 and W
−,n
N+1/2 = Wn

N + �xN
2

�̄WN

with

�̄W1 =Limiter(�W1/2,�W3/2) and �̄WN =Limiter(�WN−1/2, �WN+1/2)

where

�W1/2 = 1

�x1
(Wn

1 − Wn−1
0 ) and �WN+1/2 = 1

�xN
(Wn−1

N+1 − Wn
N )

5. ADAPTIVE MULTIRESOLUTION

Thanks to the implicit treatment of the fast-acoustic-wave components, the time step of the simu-
lation is now mainly ruled by the stability condition derived from the slow transport speed. Despite
this major improvement, the overall computing time is still high and leads the engineers to design
grids which are too coarse to capture correctly the phenomena—typically slugging—arising near
the steep phase transitions. At the same time, because of the field set-up, the computational domain
and time length of the simulations are quite large and the solution is most of the time quite smooth
in a significant portion of the domain. This makes our problem a good candidate for using an
adaptive grid.

In the context of systems of conservation laws, with highly unsteady phenomena, classical
adaptive mesh refinement techniques relying on error estimators [15] have been competed with
by multiresolution-based adaptive schemes introduced in the early nineties by Harten [5]. In this
later framework, multiscale analysis of the transient solution is used to evaluate its time-dependent
local smoothness. Following the original papers, the first method consists of defining smoothness
indicators selecting the adequate level of discretization among a hierarchy of nested grids. The
solution is discretized everywhere on the finest grid and the indicators are used to locally select
between the costly numerical scheme and a cheaper linear interpolation. This approach has been
successfully developed for complex flows in multidimensional problems [16].

A more recent method introduced by Dahmen et al. [17] and formalized in [6] consists in
using the multiscale analysis to design a time-varying adaptive grid by selecting the cells at the
level among the hierarchy of nested grids according to the local smoothness of the solution. This
so-called fully adaptive scheme has been analysed in the explicit scalar case on Cartesian grids in
[6] and further implemented in the system cases, for instance, in [7, 18, 19].

In [8], we fully describe how to apply this method in the case of a semi-implicit scheme.
Numerical simulations were performed on a simplified version of the system studied here: the drift
is neglected, the pipeline being considered horizontal, which leads to a system of four equations
only. We will briefly recall the main points of the algorithm and refer the reader to this paper for a
full description. The novelties here are the computation of the flux, the treatment of time-varying
boundary conditions and of the varying geometry, all of which will be mentioned and described
in Section 5.2.
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5.1. Basics of multiresolution analysis

We consider a uniform mesh with step size �x and starting from this finest discretization, we
define a hierarchy of K + 1 nested grids (Sk)k = 0,...,K by dyadic coarsening, with cell interfaces
xkj = 2K−k j�x . Initially, the unknown vector-valued function V is defined on the finest grid,

numbered K , where it is represented by the sequence of its mean values VK = (VK
j ) j on the cells

[xKj , xKj+1]. The coarsening operator Pk−1
k consists of cell averaging from one grid to the coarser

one, i.e.

Vk−1 = Pk−1
k Vk with Vk−1

j = 1
2 (V

k
2 j + Vk

2 j+1) (78)

The inverse operator consists in recovering the mean values on grid level k, given the mean values
on the coarser level k − 1. This involves an approximation—or prediction—operator Pk

k−1. We
select here a linear reconstruction based on a quadratic polynomial which obeys adequate locality
and consistency rules, therefore, allowing for some analysis (see [6])

V̂
k = Pk

k−1Vk−1 with

⎧⎪⎨⎪⎩
V̂

k
2 j = Vk−1

j − 1
8 (V

k−1
j+1 − Vk−1

j−1)

V̂
k
2 j+1 = Vk−1

j + 1
8 (V

k−1
j+1 − Vk−1

j−1)

(79)

We define the prediction error Ek at a given level k as the difference between the solution on level

k and its reconstruction V̂
k
using the solution at level k − 1. Thanks to the consistency property

Ek
2 j = −Ek

2 j+1, we define the detail vector Dk−1 with Dk−1
j = Vk

2 j − V̂
k
2 j and use it along with

Vk−1 to recover Vk entirely.
The two vectors Vk and (Vk−1, Dk−1) are of the same length. Iterating this encoding operation

from the finest level down to the coarsest provides the multiscale representation MK =
(V0, D0, . . . , DK−1). The double indices of the components of MK vary in ∇K ={(k, j),
k = 0, . . . , K − 1, j = 0, . . . , 2k − 1}. Using the local structure of the operators Pk−1

k and Pk
k−1,

the multiscale transformation M : VK �→ MK and its inverse M−1 can be implemented with
an optimal 0(NK ) complexity, where NK represents the dimension of the finest grid SK . The
interest of the multiscale representation lies in the fact that the local regularity of the function
is reflected by the size of its details. We can use this property to compress the function in the
multiscale domain by dropping all details smaller than a given threshold. To clarify this idea, we
first define a threshold operator T� acting on the multiscale representation MK , depending on a
subset � ⊂ ∇K of indices 
 = (k, j), by

T�(D
) =
{
0 if 
 ∈ �

D
 otherwise
(80)

Given level-dependent threshold values �= (�k)k , we introduce the subset

�� =�(�0, �1, . . . , �K ) := {
 s.t. |D
| � �|
|} where |
| = |(k, j)| = k (81)

This completes the definition of the threshold operator T� :=T�� , and gives rise to an approxi-
mating operator A� :=M−1T�M acting on the physical domain representation. In practice, we
take advantage of the fact that the remaining fine-scale details will be concentrated near singular-
ities. This is not such a trivial result because the operator A� is nonlinear since �� depends on
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VK throughout the threshold scheme. We refer to [20] for a thorough investigation of nonlinear
approximation and the proof of the main result

‖VK − A�V
K ‖L1<C�K (82)

valid when �k = 2k−K �K . This allows us to define an adaptive grid S� where the local size of the
cell will be the grid step corresponding to the finest non-negligible detail. The representation V�
of the solution on this adaptive grid is intermediate between the physical representation VK

� on
the finest grid and the encoded multiscale representation MK

� =A�V
K

S� = {(k, j) ∈ {0, . . . , K }× {0, . . . , 2k N0} \ �� s.t. (k − 1, � j/2�)∈ ��

or k = 0} (83)

where � j� denotes the integer part of j . Note, in particular, that the representation of its mean value
Vk

j on an intermediate level k does not mean that the function is locally constant on this cell of

width 2kh, but simply that its mean values on the finest grid in this area can be recovered—within
the � accuracy—using the mean values on this intermediate level and the reconstruction operators
Pl
l−1 for l = k+1, . . . , K . In the sequel, we will call partial decoding the algorithm that computes

V� on this adaptive grid from MK , and partial encoding the reverse transformation.

5.2. Prediction strategy for the tree

In the context of the semi-implicit scheme presented in Section 3.4, the singularities of the solution
can vary in strength and position with time. They can actually appear or disappear completely,
which means that the tree �� depends on time and that its computation must be performed at each
time step. Of course, we wish to compute this time-dependent tree without having to decode the
solution back to the finest grid at each time step, since this would destroy all the benefits of the
adaptive computation. This is possible, thanks to the hyperbolic nature of the PDEs system, which
ensures that the singularities of the solution move at finite speed.

More specifically, if we denote by �n
� the graded tree obtained by applying A� to Vn

K , then �n
�

can be inflated into �̃
n+1
� containing �n+1

� as well as �n
� , ensuring that estimation (82) is valid at

both times n and n + 1 when using A� =M−1T
�̃
n+1
�

M. Setting �̃
n+1
� to ∇K does the trick but

it is not very interesting in practice. The inflated tree �̃
n+1

should be as small as possible.
The inflation strategy proposed by Harten [5] consists of adding immediate neighbours of

cells where the detail is above the level-dependent threshold and the two subdivisions of cells
where the detail is more than twice this threshold. In practice this is done with the following
algorithm:

Algorithm 5.1

PREDICTION OF THE TREE �̃
n+1
�

1. Loop on levels k from fine to coarse

• if (k, j) ∈ �n
� put (k, j − 1), (k, j) and (k, j + 1) in �̃

n+1
� .

• if (k, j) ∈ �n
� and |Dk, j | � 2�k put (k + 1, 2 j) and (k + 1, 2 j + 1) in �̃

n+1
� .
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2. Loop on levels k from fine to coarse. Ensure gradedness: if (k, j) ∈ �̃
n+1
� , then

• put (k, 2� j/2�) and (k, 2� j/2� + 1) in �̃
n+1
� ,

• put (k − 1, � j/2� − 1), (k − 1, � j/2�) and (k − 1, � j/2� + 1) in �̃
n+1
� .

This relies strongly on the CFL condition which is less than one in the case of an explicit scheme.
In [8], we have extended this strategy to the time explicit–implicit scheme, thanks to the following
heuristic argument sustained by numerical experiments. The implicit treatment of the fast waves
ensures a proper behavior—from the point of view of weak solutions—of the fast waves. The
chosen CFL, on the other hand, ensures that the initial discontinuous profiles for the fast waves
are immediately smoothed out. The only sharp profiles that remain to be captured at the finest
discretization levels are associated with the slow wave components. The adaptive computation
with the prediction of the tree based on the slow wave CFL condition ensures that these profiles
remain as sharp as with the fine uniform grid computation. Below is the actual adaptive algorithm
we implement:

Algorithm 5.2
TIME ADAPTIVE MULTIRESOLUTION ALGORITHM.

1. Initialization: encoding of the initial solution using (78) and definition of �0
� according to

(80–81)
2. Loop over time steps n = 0, . . . , N − 1:

• Prediction of �̃
n+1
� (Algorithm 5.1) and partial decoding of Vn using (79)

• Derivation of the adaptive grid S̃n+1 from �̃
n+1
� using (83).

• Evolution of Vn to Vn+1 on S̃n+1 using scheme described in paragraph 3.4
• Definition of �n+1

� by partial encoding of Vn+1.

3. Decoding of VN on the finest grid SK .

5.2.1. Flux evaluation in the evolution step. An important point in this algorithm is the evaluation
of the numerical fluxes between adjacent cells of the adaptive grid, which must be performed in
order to update the solution Vn into Vn+1. Theoretically, to ensure the same order of accuracy as the
original scheme on the fine uniform scheme, the numerical flux G(V

n,−
j+1/2, V

n,+
j+1/2) should be fed

with reconstructed values on the finest level. These can be obtained by applying the reconstruction
operator Pk

k−1 as many times as necessary, starting from the available values on the adaptive grid.
Even though this can be done quite efficiently, at least in the 1-D case [6], this can lead to local
violation of the maximum principle. Indeed the thresholding procedure gives an �-approximation
of a positivity preserving scheme using the non-convex linear reconstruction (79). In our case,
this can become a severe drawback since the scheme should ensure that the densities remain
positive and that the gas mass fractions remain between zero and one for the closure laws to be
evaluated.

This leads us to prefer the alternative method consisting of applying the nonlinear limited local
reconstruction described in Section 4 directly on the unknowns available on the adaptive grid.
A comparison of the two strategies—with or without local MR reconstruction on the finest grid—
is presented in [21] for the simple model described in [8], and corroborates our choice.
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5.2.2. Geometry of the pipeline. The pipeline is made of piecewise linear sections. In such geome-
tries, a smooth initial condition—say, constant—can very well develop a singularity at an angle,
therefore, requiring small cells in this area. This cannot be correctly captured by the standard
MR analysis which designs the initial grid by looking at the smoothness of the initial condition
and will find need for coarse cells only. We circumvent this limitation by treating the geometry,
in other words the function �(x), as a component of the solution as far as the multiresolution is
concerned. Angles of the pipeline are seen as stationary singularities in the solution and small
cells are imposed at these locations however smooth the solution can be.

5.2.3. Time-varying boundary conditions. Realistic scenarios involve inlet and outlet conditions
which can have sharp variations in time. A typical operating set-up consists for instance, in
injecting mostly liquid then a sharp linear increase in gas mass fraction until reaching a constant—
higher—input level. If nothing is done near the boundary besides the standard MR analysis of
the current solution inside the pipeline, since the initial condition is smooth (28), it will require
only coarse cells. The sharp increase in injected gas will therefore be badly captured. The MR
analysis must be aware of the coming change in the boundary conditions and add small cells
accordingly.

In order to play it safe, we do this by testing the gradient in time of the boundary conditions,
approximated by a forward finite difference. If the gradient is higher than tolerance, based on the
� tolerance of the MR scheme, the finest-level cell is activated at the corresponding edge of the
grid. The adaptive grid is then graded in the usual manner and the solution—however, smooth it
may be at the current time—is locally reconstructed using Pk

k−1.

6. NUMERICAL RESULTS

In order to compare the performance of the numerical scheme of Section 3 we have chosen three
test cases which are typical for the offshore oil production. The first two tests simulate the variation
of gas inflow in V- and W-shaped pipelines, see Sections 6.1 and 6.2. The last one illustrates the
severe slugging phenomenon, see Section 6.3.

A particular emphasis is made on the comparison of the performances of the scheme on uniform
and adaptive grids. All computations are made with the second-order scheme of Section 4 using
the minmod limiter. The time step is subject to the explicit CFL condition (71) with CFLexp = 0.5
and the implicit one (72) with CFLimp = 20.

We introduce the following notions: the relative L1 error is defined as the arithmetic average of
the relative errors in density, gas mass fraction, velocity, and pressure at given time

e := 1

4

( ‖�a − �u‖
max(‖�a‖, ‖�u‖)

+ ‖Ya − Yu‖
max(‖Ya‖, ‖Yu‖)

+ ‖va − vu‖
max(‖va‖, ‖vu‖) + ‖pa − pu‖

max(‖pa‖, ‖pu‖)
)

(84)

where the subscript a denotes the values of the solution on an adaptive grid, reconstructed up to
the finest grid, and the subscript u is related to the values of the uniform solution on the finest
grid. The method or the solution is called adaptive if it is related to the adaptive grid, and uniform
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if it is related to the uniform grid. The ratio of the execution times of a uniform computation over
that of an adaptive one is called the CPU gain.

6.1. Varying inflow in a V-shaped pipeline

Consider the following pipeline geometry:

�(x)=
{−30◦, 0� x � L/2

+30◦, L/2<x � L
(85)

with the length L = 4000 m and the diameter D = 0.146 m.
The sound speed is ag = 316.22777m/s. We consider the liquid as compressible with the equation

of state (16), where �0� = 1000 kg/m3, p0 = 105 Pa, and a� = 500 m/s. The friction coefficient is
Cf = 0.005 and the gravity acceleration is g= 9.81 m/s2.

The boundary conditions at the inflow are variable in time

q̄g(t) =

⎧⎪⎪⎨⎪⎪⎩
q0g := 0.1/A, 0� t � t0

(q0g(t
1 − t) + q1g(t − t0))/(t1 − t0), t0<t � t1

q1g := 10/A, t>t1

(86)

where t0 := 100 s and t1 := 130 s determine the stabilization period, and A= �D2/4 is the cross-
section of the pipeline. The other boundary conditions are constant

q̄� := 20

A
kg/m2 s, p̄ := 105 Pa (87)

The numerical results on 256 mesh cells, using the modified Zuber–Findlay slip law (27), are
presented on Figure 1. The density, velocity and pressure components of the flow, as well as the
total mass flow �v, are represented versus the abscissa along the pipeline at time t = 2000 s. Two
curves are superimposed on each graph and indistinguishable. They correspond to the solution
obtained with the uniform grid and to the adaptive one, obtained with �= 0.01 and three refinement
levels. The square symbols indicate the level of refinement used locally, scaled between 0 and 3
on the right vertical axis. We see that the mesh is refined in the neighbourhood of discontinuities
and near the low point of the pipeline x = L/2= 2000 m.

Note that this test case is favourable for the MR method. Indeed, the MR method is especially
proficient if the solution can be computed on a coarse mesh in most of the domain. The speed-up
is directly related to the ratio between the numbers of mesh cells on the uniform and adaptive
grids. This ratio is particularly large for this test case: the pipeline is long enough, and the solution
has the form of a single propagating front along with a steady perturbation coming from the
pipeline low point. Figure 1 shows that only very few cells on the finest level are used in the
MR computation. The dependence of the CPU gain on the size of the adaptive grid is shown on
Figure 2. Each point on these three curves corresponds to a MR computation made with a different
value of the threshold parameter �. Definition of the thresholding strategy (81) indicates that the
larger the � value is, the more details are discarded and the coarser the resulting adaptive grid is.
This corresponds to a small value of the ratio between the number of cells in the adaptive grid and
the number of cells on the uniform finest grid. Best CPU gains are obtained by allowing a 5-level
coarsening of the discretization. Whatever the number of levels, high CPU gains correspond to
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Figure 1. The adaptive and uniform solutions for the flow in the V-shaped pipeline.
The squares indicate the refinement levels.
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Figure 2. The dependence of the CPU gain on the size of the adaptive grid, 1024 cells on the finest level.

coarse adaptive grids, or large value of the threshold parameter. Discarding relatively not so small
details obviously has a price in terms of accuracy, quantified by the error estimate (82) which is
illustrated in the next figure.
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Figure 3. The numerical relative error for several adaptive computations and the corresponding CPU gains.

Figure 3 illustrates the compromise between the precision and the speed-up. The relative L1

error between the uniform and adaptive solutions is displayed versus the CPU gain.
The error is actually computed with respect to the solution obtained using the finest uniform

discretization. It behaves in O(�) as predicted by (82). This is standard in performance evaluation
of adaptive scheme (see references [6, 16, 17] for instance). The total error with respect to the
exact solution is bounded by the sum of this error plus the discretization error. The latter one is
in our case behaving in O(�x) or O(�x2) in smooth regions. Again, each point corresponds to a
computation made with a different value of �. For instance, the last point � on the curve displaying
the results computed with 1024 cells on the finest level, indicates that the solution can be obtained
nine times faster than on the uniform grid. This speed-up is obtained within a 1% error and Figure
2 indicates that the size of the adaptive grid was on average 10% that of the uniform one.

The dependence of the CPU gain on the number of levels for the fixed number of cells on the
finest level is shown in Figure 4. It is obvious that increasing the number of coarsening levels does
not necessarily lead to speed-up in the computation. Actually, for very small threshold values up
to �= 10−4 the CPU gain diminishes as the number of refinement levels increases. This happens
because the precision requirements prevent the coarsest levels to be used. In fact the adaptive grid
contains roughly the same number of active cells. On the other hand, the overhead cost due to the
MR analysis of the solution increases.

6.2. Varying inflow in a W-shaped pipeline

Consider the following pipeline geometry:

�(x)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−30◦, 0� x � L/4

+30◦, L/4<x � L/2

−30◦, L/2� x � 3L/4

+30◦, 3L/4<x � L

(88)

with the length L = 4000 m and the diameter D = 0.146 m.
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Figure 4. The CPU gain versus the number of refinement levels for 1024 cells on the finest level.

The thermodynamic properties and the boundary conditions are the same as for the previous
test case.

The numerical results on 256 mesh cells, using the modified Zuber–Findlay slip law (27), are
presented on Figure 5. The adaptive solution is obtained with �= 0.01 and four refinement levels.
Here again, we see that the mesh is refined in a neighbourhood of the discontinuities and near the
low points of the pipeline.

Table I presents the speed-up of the MR method using 512 cells on the finest grid over the
uniform method on the grid of 512 cells. The numbers in parenthesis indicate the ratio of the
adaptive grid size over the finest uniform grid size, averaged over the total simulation. Observe
that the speed-up is directly related to this ratio which in turn depends on the number of active
cells on the finest level. As also shown in Figure 2 for the V-shape pipeline test, it does not depend
on the number of discretization levels.

6.3. Severe slugging

The severe slugging phenomenon is a particularly violent flow, caused by the presence of a vertical
segment in the pipeline (the riser). Slugging occurs in a certain range of pipeline geometries,
boundary conditions, and physical material properties. In particular, severe slugging takes place
under the following conditions, introduced in [11]: consider a pipeline with the length L = 74 m
and diameter D = 0.05 m. The pipeline inclination is

�(x)=
{
0◦, 0� x � 60

+90◦, 60<x � L
(89)

The sound speed is ag = 316.22777m/s. We consider the liquid as compressible with the equation
of state (16), where �0� = 1000 kg/m3, p0 = 105 Pa, and a� = 500 m/s. The friction coefficient is
Cf = 0.005 and the gravity acceleration is g= 9.81m/s2. We use the modified Zuber–Findlay slip
law (27).
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Figure 5. The adaptive and uniform solutions for the flow in the W-shaped pipeline.
The squares indicate the refinement levels.

Table I. Speed-up of the MR method versus uniform scheme for the
W-shaped pipeline test case.

�= 0.01 �= 0.001 �= 0.0001

3 levels 3.32 (25%) 2.66 (31%) 1.60 (52%)
4 levels 3.48 (23%) 2.48 (32%) 1.57 (52%)
5 levels 3.32 (24%) 2.44 (33%) 1.55 (52%)

The boundary conditions at the inflow and outflow are constant in time

q̄� := 0.07854

A
kg/m2 s, q̄g := 0.000196

A
kg/m2 s, p̄ := 105 Pa (90)

The time evolution of the solution at fixed position x = 60 m, using an adaptive grid with three
refinement levels, �= 0.0001, and 128 cells on the finest grid is displayed in Figure 6. The solution
at the beginning of the computation exhibits moderate oscillations in the mass flow, caused by
the ‘stabilization’ of the initial solution according to the given boundary conditions. Around time
t ≈ 180 the liquid starts to accumulate at the corner x = 60, thus, blocking the flow. The pressure
in the horizontal part of the pipeline starts to increase and finally pushes the mixture towards the
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Figure 6. The time evolution of the solution at x = 60 for the severe slugging phenomenon. The solutions
on the adaptive grid and the uniform one coincide.

Table II. Speed-up of the MR method versus the uniform scheme. Severe
slugging test case.

�= 0.01 �= 0.001 �= 0.0001

3 levels 2.24 (36%) 2.08 (39%) 1.94 (43%)
4 levels 2.40 (34%) 2.18 (38%) 1.86 (44%)
5 levels 2.32 (35%) 2.11 (38%) 1.83 (44%)

pipeline exit. The gas and liquid mass flows at the corner grow almost instantaneously by an order
of magnitude. Then the flow rarefies and the pressure decreases to a point where the part of the
mixture which was at the riser falls down and causes small oscillations in velocity. The liquid
blocks the flow again and the process repeats, causing the solution to be periodic. Table II presents
the speed-up of the MR method using 128 cells on the finest grid, over the uniform method on the
grid of 128 cells. The numbers in parenthesis indicate the ratio of the adaptive grid size over the
corresponding uniform grid size, averaged over the full computation. Observe that the speed-up is
directly related to the number of the cells on the finest level, cf. Figure 2.

It is extremely difficult to provide numerical evidence of convergence for severe-slugging so-
lutions, because unlike steady-state solutions, we are dealing with an intrinsically unstable phe-
nomenon. Since the initial data are in an unstable region, the state of the system progressively
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evolves into a periodic path. By changing the the mesh size, we also change the initial data. As a
result, the transitional path towards the periodic solution can be totally different.

The only kind of convergence we are able to observe numerically is the convergence in period
and in magnitude of the severe-slugging solutions. In Figure 7, we display the variation of total
mass flow at the bottom of the riser versus time, for varying uniform discretizations, labeled with
the number of cells. The curves have been shifted along the time axis so that the first ‘big jumps’
all occur at the same time. The convergence in period and in magnitude is then obvious. In the
industrial world, the oil-company operators are mostly interested in those two quantities for a
severe-slugging problem, instead of the exact locations in time of spikes

7. CONCLUSION

Throughout this paper, we have demonstrated the possibility of combining various existing compu-
tational techniques, namely, semi-implicit relaxation schemes for hyperbolic systems and adaptive
multiresolution algorithms, in order to speed up numerical simulations of two-phase flows in oil
transportation problems. The new dish we cooked up from (not so) old ingredients is meant not
only to have good taste, but also to meet strong needs in a realistic industrial context.

At the most fundamental level, the key point that makes things work properly is the conservative
form of the PDEs model under consideration, as well as the conservative form of the basic numerical
scheme over a uniform grid. This allows us to extend the method quite straightforwardly to other
conservative models. At a more practical level, expertise for each ingredient is required, and a
large number of additional technical ideas are necessary.

We are pleased with the overall performance of this acceleration method, although it is fair to
say that the actual speed-up ratio is dependent on many factors, such as the threshold parameter
or the type of data used in the run. One conclusion of the parametric study presented in the last
section of this paper is a criterion for achieving interesting CPU gains. The relation between this
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property and the compression property of the adaptive scheme, measured as the percentage ratio
between the number of cells in the adaptive and uniform grids, corroborates an observation valid
for most adaptive strategies: good performances require that the solution singularities are localized
enough to ensure a high compression ratio.

To achieve better gains, we are planning to design adaptive algorithms including local time
stepping. This next step of our project appears to be a promising, but far more difficult, challenge.
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